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Absorption-desorption phase transition induced by parametric modulation
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~Received 23 October 1997!

We present a nonequilibrium absorption-desorption phase transition, induced by a time-periodic parametric
modulation, and compare it with the phase transitions induced by white and dichotomous Markov noise. In the
case of time-periodic modulation and dichotomous Markov noise, the phase transition is found to be reentrant
with respect to the strength of the spatial coupling.@S1063-651X~98!02804-9#

PACS number~s!: 05.40.1j
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I. INTRODUCTION

In a number of recent papers@1–20#, several intriguing
cooperative phenomena have been reported in spatially
tributed systems subject to state-dependent noise. Gen
nonequilibrium phase transitions of both first and second
der and involving the breaking of the symmetry of the ev
lution equations or of time and space translation invaria
have been presented. Models with state-dependent n
have also appeared in several other areas of physics, inc
ing lasers@21#, hydrodynamics@22#, and growth phenomen
@23#. The purpose of this paper is to investigate the effec
periodic modulation with disorder in one of the simpler mo
els, exhibiting a phase transition out of an absorbing st
The linearity of the model allows one to obtain a gene
exact solution of the mean-field version. For comparison
also include the result for a perturbation by white noise a
dichotomous Markov noise and numerical results for dim
sionsd51 and 2. The study reveals that periodic perturb
tion with disorder can give rise to phase transitions that
similar to those induced by noise. At the same time,
clarify the rather surprising mechanism behind su
modulation-induced phase transitions by tracing it back
the ~transient! increase of the first moment@16#. In fact, the
system seems to escape out of the attracting state by pu
on a periodically changing pool of transiently escaping me
bers. The balance of coupling between those sites that ar
return to the absorbing state and those that are on a tran
escape is, however, delicate and a reentrant phase tran
back to the absorbing state is observed for large coup
strengths.

II. MODEL

We first consider a single scalar variable, decaying a
rate that is parametrically modulated:

ẋ~ t !5@211j~ t !#x~ t !. ~1!

This equation has the solution

x~ t !5expF2t1E
0

t

j~t!dtGx~0!. ~2!
571063-651X/98/57~4!/3866~5!/$15.00
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We will focus on three types of parametric modulatio
namely,~a! j(t) being a realization of Gaussian white noi
@24#, with ^j(t)&50 and^j(t)j(t8)&5s2d(t2t8); ~b! j(t)
corresponding to a dichotomous Markov process@24#, with
j(t)56D and switching ratek; and~c! a time-periodic per-
turbationj(t)5Acos(vt1w) with a phasew chosen at ran-
dom in @0,2p#.

Our main interest is in case~c!, for which one easily
verifies thatx(t)→0 for all values of the amplitude, phas
and frequency, except for case of quenched disorderv50
with A.1. In cases~a! and~b!, this property remains true, a
least with probability one. In other words, the absorbing st
x50 is a global attractor. However, the first mome

^x(t)&, which is given by ~a! ^x(t)&5e2te(s2/2)tx(0),
~b! ^x(t)&5e2t(l1el2t2l2el1t)/(l12l2)x(0), where
l652k6Ak21D2; and ~c! ^x(t)&5e2tI 0@(2A/v)sin(vt/
2)#x(0), where I 0 is the zeroth-order first kind of modified
Bessel function, diverges fort→` when ~a! s2.2, ~b!
D2.2k11, and ~c! A.1 for v50. For vÞ0, or in the
presence of an additional nonlinear saturation term2x3 on
the right-hand side of Eq.~1!, the divergence of̂x& is re-
moved, but a transient increase of^x(t)& above its original
value is possible. Note also that in cases~b! and ~c! the
increase is preceded by a decrease for small times; see F

FIG. 1. Time evolution of the first moment for the cases
Gaussian white noise~solid line, s253!, dichotomous noise
~dashed line,k50.1 andD51.5!, and the periodic modulation~dot-
dashed line,v51 and A54!. The inset shows the detailed ear
evolution.
3866 © 1998 The American Physical Society
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57 3867ABSORPTION-DESORPTION PHASE TRANSITION . . .
for some typical trajectories. The origin of the increase
divergence can be explained most easily for the case
Gaussian white noise. From Eq.~1! it follows that
lnx(t)1t5*0

t j(t)dt, so that lnx(t)1t is ordinary Brownian
motion with the diffusion coefficient equal tos2/2. We con-
clude that the probability densityP(x,t), with initial condi-
tion P(x,t50)5d(x2x0), is given by

P~x,t !5

expF2
~ lnx1t2 lnx0!2

2s2t
G

xA2ps2t
. ~3!

From this explicit result, one clearly sees th
P(x,t) →

t→`
d(x), while the development of a long tail inx

leads to a divergence of^x(t)& for s2.2. The increase or
divergence of the first moment thus appears to be a m
ematical peculiarity resulting from those realizations of t
noise that lead to extremely large excursions away from z
We will show below, however, that these realizations are
driving force behind genuine modulation-induced phase tr
sitions.

III. MEAN-FIELD DESCRIPTION

Our main interest is to couple a set ofN elementsxi , each
of which obeys the evolution equation~1!. The intuitive idea
is that the global behavior of these elements, which are s
ject to distinct realizations of the disorder or noise, is infl
enced more by those that tend to destabilize the refere
state, even if they are in the minority, than by the mo
common typical behavior of the large majority. The fact th
the first moment undergoes an increase above its in
value, even when this is only temporarily so as in case~c!,
was suggested in@16# as the mechanism behind the pha
transition in the spatially coupled version of the system.

We consider only the simple case of harmonic coupli
namely,

ẋi5@211j i~ t !#xi2(
j

Ki j ~xi2xj !. ~4!

Furthermore, the elements are typically arranged on a reg
lattice, e.g., a cubic lattice in dimensiond, and the coupling
is nearest neighbor with strengthKi j 5K/2d. For simplicity,
we will also assume that the realizations of the processj i(t)
are independent~random phase and white noise in spac!.
Even though Eq.~4! is linear and the equations for its mo
ments are closed, an exact solution for the probability d
sity could not been found. In fact, in case~c!, Eq. ~4! is
completely deterministic and a detailed discussion of the
sulting dynamic properties is probably quite complicated
rather clear picture is available, however, for the case
Gaussian white noise@1,8,13,25#. In particular, there exists a
sharp threshold at which the system will stop converging
the absorbing statexi50 ; i @26#, but the exact location o
this transition is only known in the limit of infinitely strong
coupling @1,7,8#. In order to obtain exact analytic results in
cluding the cases of the other types of modulation, we tur
a mean-field description@6,27,28#. Numerical results for
finite-dimensional system will be presented below. T
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mean-field description can be realized by considering glo
coupling,Ki j 5K/N for all pairs i , j , and taking the thermo-
dynamic limitN→`. Equation~4! transforms into the mean
field equation

ẋ5@211j~ t !#x2K~x2^x&!, ~5!

in which the subscripti has been dropped for simplicity o
notation. We stress that, as a result of the law of large nu
bers, one expectŝx(t)&5 limN→`1/N( j 51

N xj (t) to be a self-
averaging macroscopic intensive variable~see the Appen-
dix!. Equation~5! can be solved exactly:

x~ t !5expF2~11K !t1E
0

t

j~t!dtGx~0!1E
0

t

dtexpF2~1

1K !t1E
0

t

j~t8!dt8GK^x~ t2t!& ~6!

and the self-consistent value of^x(t)& can be easily obtained
from either Eq.~5! or ~6!. The line in the phase diagram
separating the absorption regime^x(t)&→0 from the explo-
sion regimê x(t)&→` is then found to be~a! s252 ~inde-
pendent ofK; in fact, the result for̂ x(t)& is identical to that
for K50), ~b! D25112k1K ~but this is the line of the
reentrant transition; explosive behavior is observed for c
pling constants smaller than this value ofK), and ~c!
*0

`dtKexp@2(11K)t#I0@(2A/v)sin(vt/2)#51 and is repre-
sented in Fig. 2.

IV. DISCUSSION

For K→0, the onset of explosion coincides, as expect
with the parameter values at which^x& diverges in the un-
coupled caseK50. In particular, no explosion at all occur
for case~c! of periodic modulation. However, with increas
ing value ofK, the properties of the coupled and uncoupl
system become quite different. We start with a discussion
the behavior for case~a! of Gaussian white noise. In th
uncoupled system, the divergence of^x(t)& for s2.2 corre-
sponds to a highly irregular spatiotemporal intermittent b
havior, with fewer and fewer units making ever larger exc

FIG. 2. Phase diagram: the lines indicate the boundary of
sorbing and desorbing phases obtained from the mean-field th
for case~c! of periodic modulation (v50.1, 1, 10, and 100!. Circles
represent the results of computer simulation for the o
dimensional system~v510!.
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3868 57C. Van den BROECK AND R. KAWAI
sions away from zero, while the large majority of elements
rapidly converging to zero. The behavior is quite different
the globally coupled system, when the coupling constan
sufficiently strong. This is illustrated in Fig. 3, where w
represent the probability densityP(x,t) of a single unit to
take on the valuex at time t, for the uncoupled and the
mean-field coupled system. For comparison we have
included the corresponding results for dimensionsd51 and
2. Note that the time dependence of the first moment^x& is
exactly the same in all four cases. Fors2.2, it diverges
exponentially fast. However,P(x,t) converges to ad func-
tion at zero in the uncoupled case, in perfect agreemen
course with the discussion given above. When the units
coupled with a large enough coupling constantK.s2/2 ~see
the Appendix!, this is no longer the case and the time dep
dence of the first moment reflects much more closely
global behavior ofP(x,t). In fact, the situation is more
subtle if higher-order moments are considered~see@29# and
the discussion in the Appendix!: Some kind of spatiotempo
ral intermittency still shows up, with the behavior of su
moments dominated by rare, localized spikes of explos
Note, however, that this intermittent behavior is peculiar
the linear model and disappears in the presence of non
earities. One concludes that in the white-noise case, the
fect of the coupling is as follows: The sites, at which u
likely realizations of the noise lead to explosive behavi
pull the other sites away from the absorbing state. As
coupling increases, the behaviors of all the sites beco
more and more alike and intermittency is reduced. It is, ho
ever, never completely eliminated~except if a nonlinear satu
rating term is added! and a reentrant to the absorbing sta
for sufficiently strong coupling is absent.

For case~b! of the dichotomous Markov process, the b
havior is quite similar, with, however, the important diffe
ence that there is a reentrant transition with respect to
coupling constantK. This phenomenon, which is quite un
like what one finds in equilibrium phase transitions, also h
been observed recently in another model@7# subject to mul-
tiplicative colored noise@30#.

FIG. 3. Time evolution of the probability density for the case
Gaussian white noise (s255!: ~a! no coupling,~b! one-dimensional
coupling, ~c! two-dimensional coupling, and~d! mean-field cou-
pling. A coupling strengthK53 is used for the coupled systems
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We finally turn to the most interesting case~c! of periodic
modulation. It provides a more dramatic and convincing e
ample of our statement that those realizations of disorder
are responsible for the transient increase of the first mom
in the uncoupled case can completely destabilize the ma
scopic system. Indeed, one notes that for a sufficiently la
value of the amplitudeA, the^x&50 state becomes unstab
as one crosses a critical value of the coupling constantK and
the system exhibits a nonequilibrium phase transition
wards explosive behavior. This fact is even more remarka
if one remembers that every single element on its own ex
riences a fast exponential return to the absorbing statex50.
Apparently, those members that experience a transient
crease in theirx values pull over the other sites away fro
zero. However, as those members start relaxing, other s
take over and pull the system even further away from ze
and so on, ad infinitum. In other words, the system seem
be pulling itself up at a periodically changing pool of tra
siently growing members. This can be quite nicely illustrat
by identifying which sites have the larger- and smallerx
values as a function of time; see Fig. 4. Note the differen
between the mean field and thed51 situation. In the latter
case, the larger-x values stay more or less concentrated
the same sites with time, while a slow, nucleationlike proc

FIG. 4. Time evolution of individual sites. A system of 256 sit
with a periodic modulation (K55, v510, andA510! evolves for
t510 units. Gray-level coding identifying the sites~horizontal axis!
with the larger-x values~light color! versus the smaller-x values
~dark color! as a function of time~vertical axis!. Results are shown
for ~a! mean-field coupling and~b! one-dimensional coupling.
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57 3869ABSORPTION-DESORPTION PHASE TRANSITION . . .
takes place that joins together neighboring larger- a
smaller-x values, respectively. The resulting behavior for t
single-site probability densityP(x,t) are shown in Fig. 5,
including the results for uncoupled case, dimensionsd51
and 2, and the global coupling~mean field!.

As one increases further the coupling strength, the ab
of the system to lift itself out of the absorbing state, howev
again decreases and a reentrant phase transition is fou
another larger critical value ofK, just as in case~b!. Within
the context of the intuitive arguments given above, this f
ture can be explained by the fact that the transient increas
^x& is preceded by a decrease for very small times: By c
pling the units too strongly, each of them can explore only
own unperturbed dynamics for very short times and the
creasing tendency of̂x& with time prevails. Note that one
can explain in the same way the reentrant behavior in
phase diagram for the dichotomous noise case; see Fig.

We finally turn to a further comparison of the mean-fie
results with those obtained through extensive simulation
Eq. ~4! for the periodic modulation in finite-dimensional sy
tems. One finds qualitatively similar phase diagrams,
nearest-neighbor coupling with strengthKi j 5K/2d, even in
low-dimensional casesd51 and 2. Results ind51 are in-
cluded in Fig. 2. The location of the transition line is pr
dicted surprisingly well by the mean-field theory. We al
performed extensive simulations in the presence of a non
earity 2xi

3 . The presence of this term does not modify t
location of the phase transition, but the transition is now
second order and the order parameter grows continuo
from zero as one leaves the absorbing state; see Fig. 6.
thermore, even though the dynamics are purely determini
the statistical properties seems to converge to steady-
values and one can, e.g., obtain accurate results for sp
correlation functions. These results are represented in F
@d51 and 2 for case~c! of periodic modulation#. One rec-
ognizes the appearance of long-range spatial correlation
the vicinity of the phase transition.

FIG. 5. Time evolution of the probability density for the case
periodic modulation:~a! no coupling,~b! one-dimensional coupling
~c! two-dimensional coupling, and~d! mean-field coupling. A cou-
pling strengthK52 is used for the coupled systems.
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APPENDIX

In cases~a! and ~b!, aspects of the spatiotemporal inte
mittency that characterizes the uncoupled system persists
only in finite dimensions@29#, but even in the mean-field
description. To show this, consider the Gaussian white-no
case~a!. Thenth momentsmn5^xn& of P(x,t) obey the set
of equations

FIG. 6. First moment for the case of periodic modulati
(v510 andA510! as a function of the coupling constantK. The
one-dimensional system~circles!, two-dimensional system~tri-
angles!, and mean-field theory~solid lines! are shown.

FIG. 7. Spatial correlations for the case of periodic modulat
(v510 andA510!. The upper graph is for the one-dimension
system and the lower graph for the two-dimensional system. S
and dot-dashed lines represent the vicinities of the first critical p
and the reentrant transition point, respectively, and dashed line
responds to the ordered phase.
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ṁn52nS 11K2n
s2

2 Dmn1nKm1mn21 . ~A1!

To extract the asymptotic behavior fort→` one sets
mn;exp(ant). One then finds thatan52n(11K2ns2/2) if
an.211s2/21an21 andan5211s2/21an21 otherwise.
With a15211s2/2, the behavior of all the moments can b
extracted. The behavior of the second moment is of part
lar interest since the very validity of the mean-field descr
e,

o,

-

A

ys

e

an

a

u-
-

tion depends on it. One finds thata2522(11K2s2) for
K,s2/2 and a2522(12s2/2)52a1 for K.s2/2. We
conclude that the second moment^x2& diverges more rapidly
than ^x&2 for K,s2/2. As a result, one expects that in an
finite system, the relative fluctuations of (1/N)( j 51

N xj (t) will
become large after a time of the ordert; lnN whenK,s2/2.
For larger times, one will observe large sample to sam
fluctuations and the mean-field approximation will com
pletely break down.
A

E

J.

n
si-
he-
, J.
,

nd

tt.
@1# A. S. Mikhailov, Phys. Rep.184, 308 ~1989!.
@2# Noise in Nonlinear Dynamical Systems, edited by F. Moss and

P. V. E. McClintock~Cambridge University Press, Cambridg
1989!.

@3# L. Schimansky-Geier and Ch. Zulicke, Z. Phys. B82, 157
~1991!.

@4# J. Garcı´a-Ojalvo, A. Herna´ndez-Machado, and J. M. Sanch
Phys. Rev. Lett.71, 1542~1993!.

@5# L. Ramı́rez-Piscina, A. Herna´ndez-Machado, and J. M. San
cho, Phys. Rev. B48, 119 ~1993!.

@6# C. Van den Broeck, J. M. R. Parrondo, J. Armero, and
Hernández-Machado, Phys. Rev. E49, 2639~1994!.

@7# C. Van den Broeck, J. M. R. Parrondo, and R. Toral, Ph
Rev. Lett.73, 3395~1994!.

@8# A. Becker and L. Kramer, Phys. Rev. Lett.73, 955 ~1994!.
@9# A.S. Pikovsky, K. Rateitschak, and J. Kurths, Z. Phys. B95,

541 ~1994!.
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