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Absorption-desorption phase transition induced by parametric modulation

C. Van den Broeck
Limburgs Universitair Centrum, B-3590 Diepenbeek, Belgium

R. Kawai
University of Alabama at Birmingham, Birmingham, Alabama 35294
(Received 23 October 1997

We present a honequilibrium absorption-desorption phase transition, induced by a time-periodic parametric
modulation, and compare it with the phase transitions induced by white and dichotomous Markov noise. In the
case of time-periodic modulation and dichotomous Markov noise, the phase transition is found to be reentrant
with respect to the strength of the spatial couplif$1063-651X98)02804-9

PACS numbdrs): 05.40:+]

[. INTRODUCTION We will focus on three types of parametric modulation,
namely,(a) £(t) being a realization of Gaussian white noise
In a number of recent papef&é—20], several intriguing [24], with (£(t))=0 and(&(t)£(t"))=a28(t—t'); (b) &(t)
cooperative phenomena have been reported in spatially digorresponding to a dichotomous Markov procgz4], with
tributed systems subject to state-dependent noise. Genuigét) =+ A and switching ratd; and(c) a time-periodic per-
nonequilibrium phase transitions of both first and second orturbation £(t) = Acos(t+¢) with a phasep chosen at ran-
der and involving the breaking of the symmetry of the evo-dom in[0,27].
lution equations or of time and space translation invariance Our main interest is in casé), for which one easily
have been presented. Models with state-dependent noiserifies thatx(t)—0 for all values of the amplitude, phase,
have also appeared in several other areas of physics, includnd frequency, except for case of quenched disoute0
ing laserq 21], hydrodynamic$22], and growth phenomena with A>1. In casesa) and(b), this property remains true, at
[23]. The purpose of this paper is to investigate the effect ofeast with probability one. In other words, the absorbing state
periodic modulation with disorder in one of the simpler mod-x=0 is a global attractor. However, the first moment
els, exhibiting a phase transition out of an absorbing statez.x(t», which is given by (@) <X(t)>=e—te(02/z)tx(0),
The linearity of the model allows one to obtain a general(b) (x(t))=e"{(r, e t=N_eMY/(\, —A_)x(0), where

exact solution of the mean-field version. For comparison we  __ VZTAZ; and (0) (x(1))=e !1[(2A/w)sint/

a!so include the result f(_)r a perturbatiqn by white nois_e an )1x(0), wherel is the zeroth-order first kind of modified
dichotomous Markov noise and numerical results for dimengoqq function, diverges for—o when (@) 02>2, (b)

sionsd=1 and 2. The study reveals that periodic perturba-Az>2k+1 and(c) A>1 for @=0. For w#0, or in the
tion with disorder can give rise to phase transitions that ar ’ ' ’
similar to those induced by noise. At the same time, w
clarify the rather surprising mechanism behind such

modulation-induced phase transitions by tracing it back Qa1ue is possible. Note also that in cas@s and (c) the

the (transient increase of the first momeﬁlﬁ]. In fact, the . increase is preceded by a decrease for small times; see Fig. 1
system seems to escape out of the attracting state by pulling

on a periodically changing pool of transiently escaping mem-
bers. The balance of coupling between those sites that are on
return to the absorbing state and those that are on a transient
escape is, however, delicate and a reentrant phase transition
back to the absorbing state is observed for large coupling
strengths.

resence of an additional nonlinear saturation terx? on
he right-hand side of Eq1l), the divergence ofx) is re-
moved, but a transient increase (@f(t)) above its original

1. MODEL

We first consider a single scalar variable, decaying at a
rate that is parametrically modulated:

X(t)=[— 1+ &) Ix(t). (1)

FIG. 1. Time evolution of the first moment for the cases of
Gaussian white noisesolid line, ¢?=3), dichotomous noise
(dashed linex=0.1 andA =1.5), and the periodic modulatiofuot-
x(0). 2) dashed linew=1 and A=4). The inset shows the detailed early
evolution.

This equation has the solution

t
X(t)=eX[{ —t+f &(r)dr
0

1063-651X/98/5)/38665)/$15.00 57 3866 © 1998 The American Physical Society



57 ABSORPTION-DESORPTION PHASE TRANSITION ... 3867

for some typical trajectories. The origin of the increase or 40
divergence can be explained most easily for the case of
Gaussian white noise. From Eql) it follows that 30 }

Inx(t)+t=[&dr, so that Ix(t)+t is ordinary Brownian
motion with the diffusion coefficient equal @?/2. We con- < 20 ]
clude that the probability densitiy(x,t), with initial condi- ®=10

tion P(x,t=0)= &6(x—Xgp), is given by

10 o o
(Inx+t—Inxo)? =T
ex e — 0 @=0.1 . .
P(x.t)= 20t 3 0 20 40
, X\2mot K

. - FIG. 2. Phase diagram: the lines indicate the boundary of ab-
From this explicit result, one clearly sees thatgyying and desorbing phases obtained from the mean-field theory
P(x,t),—,6(x), while the development of a long tail ik o case(c) of periodic modulation =0.1, 1, 10, and 100Circles
leads to a divergence d@k(t)) for o>>2. The increase or represent the results of computer simulation for the one-
divergence of the first moment thus appears to be a mathtimensional systertw=10).
ematical peculiarity resulting from those realizations of the
noise that lead to extremely large excursions away from zeranean-field description can be realized by considering global
We will show below, however, that these realizations are thQ;oupIing,Kij =K/N for all pairsi,j, and taking the thermo-
driving force behind genuine modulation-induced phase trandynamic limitN— . Equation(4) transforms into the mean-
sitions. field equation

I1l. MEAN-FIELD DESCRIPTION >'<=[—1+ E() Ix—K(x—(x)), 5)

Our main interest is to couple a setidfelements;, each in which the subscript has been dropped for simplicity of
of which obeys the evolution equatigh). The intuitive idea . P pp plicity
notation. We stress that, as a result of the law of large num-

is that the global behavior of these elements, which are suhy- .

ject to distinct realizations of the disorder or noise, is influ- €rs, one expect(s<(t)>_=I|_mN_m_1/NEj:_1xj(t) Rt

enced more by those that tend to destabilize the referend®’ <'a9!Ng Mmacroscopic Intensive vanghikee the Appen-

state, even if they are in the minority, than by the more x). Equation(5) can be solved exactly:

common typical behavior of the large majority. The fact that . .

the first moment undergoes an increase above its initial X(t):ex%_(ﬁ K)HJ &(r)dr X(O)Jrf dfexp{—(l

value, even when this is only temporarily so as in cage 0 0

was suggested ifil6] as the mechanism behind the phase

transition in the spatially coupled version of the system. +K) T+ ng(r’)dr’ K{x(t— 7)) (6)
We consider only the simple case of harmonic coupling, 0

namely,

and the self-consistent value @f(t)) can be easily obtained
from either Eq.(5) or (6). The line in the phase diagram
separating the absorption regirfre(t))—0 from the explo-
sion regime(x(t))— is then found to béa) o>=2 (inde-
Furthermore, the elements are typically arranged on a regul&@endent oK; in fact, the result fo(x(t)) is identical to that
lattice, e.g., a cubic lattice in dimensiaoh and the coupling for K=0), (b) A*>=1+2k+K (but this is the line of the

is nearest neighbor with strengly; = K/2d. For simplicity, reentrant transition; explosive behavior is observed for cou-
we will also assume that the realizations of the progg&d  pling constants smaller than this value &), and (c)

are independentrandom phase and white noise in space JodtKexd —(1+K)t]lo[(2Aw)sin(wt/2)]=1 and is repre-
Even though Eq(4) is linear and the equations for its mo- sented in Fig. 2.

ments are closed, an exact solution for the probability den-

sity could not bee'n_fo'und. In fact,'in ca}$e), E.q. (4) is IV. DISCUSSION

completely deterministic and a detailed discussion of the re-

sulting dynamic properties is probably quite complicated. A For K—0, the onset of explosion coincides, as expected,
rather clear picture is available, however, for the case ofvith the parameter values at whigk) diverges in the un-
Gaussian white noigd.,8,13,25. In particular, there exists a coupled cas&=0. In particular, no explosion at all occurs
sharp threshold at which the system will stop converging tdor case(c) of periodic modulation. However, with increas-
the absorbing state,=0 Vi [26], but the exact location of ing value ofK, the properties of the coupled and uncoupled
this transition is only known in the limit of infinitely strong system become quite different. We start with a discussion of
coupling[1,7,8. In order to obtain exact analytic results in- the behavior for cas¢a) of Gaussian white noise. In the
cluding the cases of the other types of modulation, we turn taincoupled system, the divergence(r(t)) for o2>2 corre-

a mean-field descriptionn6,27,28. Numerical results for sponds to a highly irregular spatiotemporal intermittent be-
finite-dimensional system will be presented below. Thehavior, with fewer and fewer units making ever larger excur-

'xi=[—1+§i<t>]xi—; Kij (X —X;)- (4)
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FIG. 3. Time evolution of the probability density for the case of
Gaussian white noises€=5): (a) no coupling,(b) one-dimensional
coupling, (c) two-dimensional coupling, an¢d) mean-field cou-
pling. A coupling strengttK =3 is used for the coupled systems.

time

sions away from zero, while the large majority of elements is
rapidly converging to zero. The behavior is quite different in
the globally coupled system, when the coupling constant is
sufficiently strong. This is illustrated in Fig. 3, where we
represent the probability densif(x,t) of a single unit to
take on the valuex at timet, for the uncoupled and the
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mean-field coupled system. For comparison we have also space
included the corresponding results for dimensidssl and
2. Note that the time dependence of the first mon{eintis FIG. 4. Time evolution of individual sites. A system of 256 sites

exactly the same in all four cases. Fef>2, it diverges Wwith a periodic modulation =5, »=10, andA=10) evolves for
exponentially fast. HowevelR(x,t) converges to & func-  t=10 units. Gray-level coding identifying the sitésorizontal axi$
tion at zero in the uncoupled case, in perfect agreement oFith the largerx values(light color) versus the smallex-values
course with the discussion given above. When the units ardark colojp as a function of time(vertical. axis. _Results are shown
coupled with a large enough coupling constkint o2/2 (see for (@) mean-field coupling antb) one-dimensional coupling.
the Appendiy, this is no longer the case and the time depen-
dence of the first moment reflects much more closely the We finally turn to the most interesting ca@® of periodic
global behavior ofP(x,t). In fact, the situation is more modulation. It provides a more dramatic and convincing ex-
subtle if higher-order moments are considefsee[29] and  ample of our statement that those realizations of disorder that
the discussion in the AppendixSome kind of spatiotempo- are responsible for the transient increase of the first moment
ral intermittency still shows up, with the behavior of such in the uncoupled case can completely destabilize the macro-
moments dominated by rare, localized spikes of explosionscopic system. Indeed, one notes that for a sufficiently large
Note, however, that this intermittent behavior is peculiar tovalue of the amplitudé\, the(x)=0 state becomes unstable
the linear model and disappears in the presence of nonlirs one crosses a critical value of the coupling congtaaind
earities. One concludes that in the white-noise case, the efhe system exhibits a nonequilibrium phase transition to-
fect of the coupling is as follows: The sites, at which un-wards explosive behavior. This fact is even more remarkable
likely realizations of the noise lead to explosive behavior,if one remembers that every single element on its own expe-
pull the other sites away from the absorbing state. As thaiences a fast exponential return to the absorbing state.
coupling increases, the behaviors of all the sites becom@pparently, those members that experience a transient in-
more and more alike and intermittency is reduced. It is, how<rease in theix values pull over the other sites away from
ever, never completely eliminatéelxcept if a nonlinear satu- zero. However, as those members start relaxing, other sites
rating term is addedand a reentrant to the absorbing statetake over and pull the system even further away from zero,
for sufficiently strong coupling is absent. and so on, ad infinitum. In other words, the system seems to
For casgb) of the dichotomous Markov process, the be-be pulling itself up at a periodically changing pool of tran-
havior is quite similar, with, however, the important differ- siently growing members. This can be quite nicely illustrated
ence that there is a reentrant transition with respect to thby identifying which sites have the larger- and smaller-
coupling constanK. This phenomenon, which is quite un- values as a function of time; see Fig. 4. Note the difference
like what one finds in equilibrium phase transitions, also hadetween the mean field and thde=1 situation. In the latter
been observed recently in another moldglsubject to mul-  case, the largex-values stay more or less concentrated on
tiplicative colored nois¢30]. the same sites with time, while a slow, nucleationlike process
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As one increases further the coupling strength, the ability
of the system to lift itself out of the absorbing state, however, APPENDIX

again decreases and a reentrant phase transition is found atln cases(a) and (b), aspects of the spatiotemporal inter-

another larger critical value df, just as in casgh). Within mittency that characterizes the uncoupled system persists not

the context of the intuitive arguments given above, this fea’only in finite dimensiong29], but even in the mean-field

ture can be explained by the fact that the transient increase Qfacription. To show this, consider the Gaussian white-noise
(x) is preceded by a decrease for very small times: By COUzage(a). Thenth momentsu, = (x") of P(x,t) obey the set
pling the units too strongly, each of them can explore only itsyf equations

own unperturbed dynamics for very short times and the de-
creasing tendency dfx) with time prevails. Note that one
can explain in the same way the reentrant behavior in the -—
phase diagram for the dichotomous noise case; see Fig. 1.
We finally turn to a further comparison of the mean-field
results with those obtained through extensive simulations of
Eq. (4) for the periodic modulation in finite-dimensional sys-
tems. One finds qualitatively similar phase diagrams, for
nearest-neighbor coupling with strengtty =K/2d, even in
low-dimensional cased=1 and 2. Results il=1 are in-
cluded in Fig. 2. The location of the transition line is pre-
dicted surprisingly well by the mean-field theory. We also
performed extensive simulations in the presence of a nonlin-
earity —xf’. The presence of this term does not modify the
location of the phase transition, but the transition is now of
second order and the order parameter grows continuously
from zero as one leaves the absorbing state; see Fig. 6. Fur-
thermore, even though the dynamics are purely deterministic, distance

the statistical properties seems to converge to steady-state g, 7. spatial correlations for the case of periodic modulation
values and one can, e.g., obtain accurate results for spatlgbzlo andA=10). The upper graph is for the one-dimensional
correlation functions. These results are represented in Fig. dystem and the lower graph for the two-dimensional system. Solid
[d=1 and 2 for caséc) of periodic modulatioh One rec-  and dot-dashed lines represent the vicinities of the first critical point
ognizes the appearance of long-range spatial correlations #nd the reentrant transition point, respectively, and dashed line cor-
the vicinity of the phase transition. responds to the ordered phase.

normalized spatial correlation
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o2 tion depends on it. One finds thay=—2(1+K—¢?) for

1+K— n?) pwntnKpgpn-1. (Al)  K<g?2 and a,= —2(1—0?/2)=2a, for K>o0?/2. We
conclude that the second momért) diverges more rapidly

To extract the asymptotic behavior far—o one sets than(x)? for K<o?/2. As a result, one expects that in any
tn~exp@yt). One then finds tha,= —n(1+K—no?/2) if  finite system, the relative fluctuations of (\I])/EJN: 1% (1) will
a,>—1+c?/2+a,_; anda,= — 1+ 0?/2+a,_, otherwise. ~become large after a time of the ordefInN whenK < o%/2.
With a; = — 1+ ¢?/2, the behavior of all the moments can be For larger times, one will observe large sample to sample
extracted. The behavior of the second moment is of particufluctuations and the mean-field approximation will com-
lar interest since the very validity of the mean-field descrip-pletely break down.

Mn=—n
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